dependence; and historical practices in the area.

(c) If the area of review is determined by a mathematical model pursuant to paragraph (a) of this section, the permissible radius is the result of such calculation even if it is less than onefourth (1/4) mile.

[45 FR 42500, June 24, 1980, as amended at 46 FR 43161, Aug. 27, 1981; 47 FR 4999, Feb. 3, 1982]

§ 146.7 Corrective action.

In determining the adequacy of corrective action proposed by the applicant under 40 CFR 144.55 and in determining the additional steps needed to prevent fluid movement into underground sources of drinking water, the following criteria and factors shall be considered by the Director:

- (a) Nature and volume of injected fluid;
- (b) Nature of native fluids or by-products of injection;
 - (c) Potentially affected population;
 - (d) Geology;
 - (e) Hydrology;
 - (f) History of the injection operation;
 - (g) Completion and plugging records;
- (h) Abandonment procedures in effect at the time the well was abandoned;
- (i) Hydraulic connections with underground sources of drinking water.

(Clean Water Act, Safe Drinking Water Act, Clean Air Act, Resource Conservation and Recovery Act: 42 U.S.C. 6905, 6912, 6925, 6927, 6974)

[45 FR 42500, June 24, 1980, as amended at 46 FR 43162, Aug. 27, 1981; 48 FR 14293, Apr. 1, 1983]

§ 146.8 Mechanical integrity.

- (a) An injection well has mechanical integrity if:
- (1) There is no significant leak in the casing, tubing or packer; and
- (2) There is no significant fluid movement into an underground source of drinking water through vertical channels adjacent to the injection well bore
- (b) One of the following methods must be used to evaluate the absence of significant leaks under paragraph (a)(1) of this section:

- (1) Following an initial pressure test, monitoring of the tubing-casing annulus pressure with sufficient frequency to be representative, as determined by the Director, while maintaining an annulus pressure different from atmospheric pressure measured at the surface;
- (2) Pressure test with liquid or gas; or
- (3) Records of monitoring showing the absence of significant changes in the relationship between injection pressure and injection flow rate for the following Class II enhanced recovery wells:
- (i) Existing wells completed without a packer provided that a pressure test has been performed and the data is available and provided further that one pressure test shall be performed at a time when the well is shut down and it the running of such a test will not cause further loss of significant amounts of oil or gas; or
- (ii) Existing wells constructed without a long string easing, but with surface casing which terminates at the base of fresh water provided that local geological and hydrological features allow such construction and provided further that the annular space shall be visually inspected. For these wells, the Director shall prescribe a monitoring program which will verify the absence of significant fluid movement from the injection zone into an USDW.
- (c) One of the following methods must be used to determine the absence of significant fluid movement under paragraph (a)(2) of this section:
- (1) The results of a temperature or noise log; or
- (2) For Class II only, cementing records demonstrating the presence of adequate cement to prevent such migration; or
- (3) For Class III wells where the nature of the casing precludes the use of the logging techniques prescribed at paragraph (c)(1) of this section, cementing records demonstrating the presence of adequate cement to prevent such migration;
- (4) For Class III wells where the Director elects to rely on cementing records to demonstrate the absence of significant fluid movement, the monitoring program prescribed by §146.33(b)